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1.0 INTRODUCTION

In this Unit, we shall define the concept of limit, continuity and
differentiability.

1.1 OBJECTIVES

After studying this unit, you should be able to :
e define limit of a function;

e define continuity of a function; and

o define derivative of a function.

1.2  LIMITS AND CONTINUITY

We start by defining a function. Let A and B be two non empty sets. A
function f from the set A to the set B is a rule that assigns to each element x of
A a unique element y of B.

We call y the image of x under f and denote it by f(x). The domain of f is the
set A, and the co—domain of f is the set B. The range of f consists of all
images of elements in A.  We shall only work with functions whose domains
and co—domains are subsets of real numbers.

Given functions f and g, their sum f + g, difference f — g, product f. g and
quotient f/ g are defined by

(f+9) () =f(x) +9(x)
(f-g) (%) =10 - 9(x)

(f.g) () =1(x) g(x)
and i (X) = w
g 9(x)
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Calculus

For the functions f + g, f— g, f. g, the domain is defined to be intersections of the
domains of f and g, and for f / g the domain is the intersection excluding the
points where g(x) = 0.

The composition of the function f with function g, denoted by fog, is defined by

(fog) (x) =f (3(x)).

The domain of fog is the set of all x in the domain of g such that g(x) is in the
domain of f.

Limit of a Function
We now discuss intuitively what we mean by the limit of a function. Suppose a
function f is defined on an open interval (a, ) except possibly at the point

a €(a, B) we say that

f(x) >Las x—a

(read f(x) approaches L as x approaches a), if f(x) takes values very, very close to
L, as x takes values very, very close to a, and if the difference between f(x) and L
can be made as small as we wish by taking x sufficiently close to but different
from a.

As a mathematical short hand for f(x) -»L as x — a, we write

chi_r)réf(x) = L.

- x%2-9
Example 1: Evaluate lim
x-3 X — 3

2

X
Solution : Let f(x) = o

x = 3. This function is defined for each x except for x = 3. Let us calculate the
value of fat x = 3 + h, where h # 0. We have

R This function is defined for each x except for

B+m)?-9 9+6h+h* -9 h(6+h)
3+h—-3 h - h
We now note that as x takes values which are very close to 3, that is, h takes

F(3+h) = 6+h

values very close to 0, f(3 +h) takes values which are very close to 6. Also,
the difference between f (3 + h) and 6 (which is equal to h) can be made as
small as we wish by taking h sufficiently close to zero.
Thus,

limf(x) =6

x—3
Properties of Limits

We now state some properties of limit (without proof) and use them to evaluate
limits.



Theorem 1 : Let a be a real number and let f(x) = g(x) for all x # a in an open
interval containing a. If the limit g(x) as X = @exists, then the limit
of f(x) also exists, and

lim f(x) = lim g(x)
x—a x—a

Theorem 2 : If c and x are two real numbers and n is a positive integer, then the
following properties are true :

(1) limc=c
xX—a

(2) limx=a
x—a

(3) limx™ =a"
x—a

Theorem 3 : Let c and a be two real numbers, n a positive integer, and let f
and g be two functions whose limit exist as X = @, Then the
following results hold :

L lim [cf()] = climf()]

2 lim[fG) £ g(x)] = lim f(x) £ limg(x)

3. limlF@g@] = [lim f()] [limg ()]

x—a

_fo  limf)
i _

_ . I
lim s }Cl_r,rcll T provided lim glx) #0,

5. lim [f()]" =[ lim f()]"

6. Iflim f(x) = f(a), then lim%/f(x) =/f(a)
x—a x—-a
Example 2: Evaluate lirr; (4x% + 7)
X—
Solution : lim (4x2 + 7) = lim 4x? + lim7
x—3 X—3 x—3
= 4lim x? + lim7
x—3 x—2
=4(3)° +7 =4 X9 +7
= 43

Note : If p(x)is a polynomial, then lim p(x) = p(a).
x—a
If g (x) is also a polynomial and q(a) # 0, then

im PO) _ P(@
x>a q(x)  q(a)

Differential Calculus



Calculus Example 3: Evaluate the following limits :

A B 3 _ax+b
() Ll_rg [(x- 1)2 + 6] (ii) LI_I;% S ug (d #0)
x2+5x+7

Solution: (i) lim [ (x~ 1)2+6] =(2-1)°+6 =1+6=7
X—
(i) Since lirr(1) cx+d=d#£0,
X—

ax+b  a(0)+b b

I = =
o cx+d | c0)+d d

(ifi) Since lim (x* +8) = 3%+ 8 = 17 #0,
X—

i x*+ 5x+7 3*+53)+7 31
53 x2+8  32+8 17

(iv) Since lim1 X+17=-1+ 17 =16, we have
x——

lim Vx+17=vV16=4

x->—1

Example 4: Evaluate the following limits.

o x?—7x+10 < x? -1
Vo T x—s Qg
VT2 V2 o VTEE- VIR
(i)  lim — (iv) lim

x—0 X x—0 X

Solution : (i) Here, lirré (x —5) = 0. So direct substitution will not work.
x—

We can proceed by cancelling the common factor (x —5) in
numerator and denominator and using theorem 1, as shown below :

. x*=7x+10  (x—2)(x—5)
xl—rg x—5 x5 (x—5)

= lim (x — 2), forx#5
x-5
=5-2=3

=1 (x-Dx+1)
-1 x—1

=x+1for x #1,

(ii) Since
therefore by theorem 1, we have

2

lim

lim—— =}C1_r;r}(x+1)=1+1=2.



(i) Once again we see that direct substitution fails because itsleads Differential Calculus
to indeterminate form % In this case, rationalising the
numerator helps as follows. For x #0,

Kl J_zﬁ] J_zﬁ]
X | X Ix+2+ 2

_[ X+2-2

X
(2 ﬁj:x(M+Jﬂ
1
“ha2s 2

Therefore, by Theorem 1, we have

Jx+2-2 1 1 1 1
lim———————— = lim—— = lim = =
x—-0 X X504x +2 442 x20 0+2+\/§ \/E—F\/E 2V2

(iv)  Forx#0, we have

Jl+x - J1-x _ (\/1+x - Jl—xj (\/1+x + Jl—xJ

X X \/1+x + J1-x

2X 2

T X ex - ox X+ ex

" by theorem 1, we have

AL+ x = Jl=x . 2 _ 2
x>0 X 0 J1+x + J1-x V140 + V1-0

:E:l
2

An important limit

n n

. X , e
Example5: Prove that Ilrp—a =na"" where n is positive integer
x>0 Xx—a

Solution : We know that

X"— a"= (x=a) (X" '+ x"%a+x" %% xa" 2+ am b

Therefore, for x # a, we get

n_.n
lim=—/—== x4+ x"Za+x" %%+ ... xa" 2+ amt
x->a Xx—a

Hence by Theorem 1, we get

n_,n
lim === lim (X" "+ x" 2a + x" %%+ .............. xa" *+a" Y
x—a X—a x—-a

=a"+a"la+a" At o, aa" *+a" !

“nat!



Calculus Note : The above limit is valid for negative integer n, and in general for any
rational index n provided a > 0. The above formula can be directly used
to evaluate limits.

3
Example 6: Evaluate IimX2 2!
x>3 X° =90
x*-27 . x*-3

Solution:  lim—; = lim——
x->3 X =9 x—>3 X° -3

One—sided Limits
Definition : Let f be a function defiend on an open interval (a— h, a + h) (h > 0).
A number L is said to be the Left Hand Limit (L.H.L.) of f at a if f (x) takes

values very close to L as x takes values very close to a on the left of a (x #a). We
then write

chi_r)% f(x)=L

We similarly define L to be the Right Hand Limit if f(x) takes values close to L
as x takes values close to a on the right of a and write lim+f(x) =ik
x—-a

Note that lim f(x) exists and is equal to L if and only if lim f(x) and
x—-a x—>a—

lim+f(x) both exist and are equal to L.

x—-a

lim f(x) = L = lim f(x) = limf(x)
x—-a— x—-a+ x—a

Example 7 : Show that lim 2 does not exist.

x—0 X

Solution : Let f(x)= 2 , x#0.

) | x, x>0
Since x| = T %<0

. 1, x>0
SAICER

So, leI& flx) = Ll_r}(l)(l) = land
lim f(x) = lim(-1)=-1
x—0— x—0

Thus lim f(x) does not exist.
10 x—0



Continuous Functions Differential Calculus

Definition : A function f is said to be continuous at x = a if the following
three conditions are met :

(1) f(a) is defined

(2 }Cl_r)rcll f(x) exists

) lim f(x) = f(a)
xX—a
Example 8: Show that f (x) = || is continuous at x =0

Solution: Recall that

_ Jx, x=0
1(x) = I _{—x, x<0
To show that f is continuous at x = 0, it is sufficient to show that
lim f(x) = lim (x) = f(0) and
x—0— x—0+
We have
S0 = g O =Ry = g el
=g N

= limh=0
h—-0+

and i fG) = im FO+h) = lim £ (k)
= Jim (=0
Thus, hll)r(r)l_f(x) = hll)r&f(x) =0
Also, f(0)=0
Therefore, lim f(x) = 0= f(0)
x—0+
Hence, f is continuous at x = 0.
Example 9: Check the continuity of f at the indicated point

)

| x|

i f(x) =

, X#0 at x=0

X
0 x=0

11



Calculus ,

2_

i) fo =021 xx1 at x=1
x-1
2 x=1

Solution: (i) We have already seen in Example 7 that I|mu does not exist.

x—0 X

Hence, f is not continous at x =0

2
(i) Here, I|m f(x)-llm —1
x>l X —
= Iirrll(x+1)A
=2
Also, f (1) =2

- lim f(x) = f(1)
x—-1
Hence, fis continuous at x = 1.
Definition : A function is said to be continuous on an open interval (a,b) if it

Is continuous at each point of the interval. A function which is continuous on the
entire real line (— o0,) is said to be everywhere continuous.

Algebra of Continuous Functions

Theorum : Let ¢ be a real number and let f and g be continuous at x =a. Then
the functions cf, f+g, f— g, fg are also continuous at x = a. The functions é and 5

are continuous provided g(a) # 0.

Remark: It must be noted that polynomial functions, rational functions,
trigonometric functions, exponential and logarithmic function are continuous in
their domains.

Example 10 : Find the points of discontinuity of the following functions :
2 .
. fon=< X if x>0
W T {x +3 x<0
(ii) f(x) = { lfx ;t 0

Solution : (i) Since x* and x + 3 are polynomial functions, and polynomial
functions are continuous at each point in R, f is continuous at each x €
R except possibly at x = 0. For x =0, we have
A= g SO = g Ch3) = 04323
- _ - — - — - 2 —
iS00 = g, FOF R = I S = ikt = 0

Therefore, since lirgl fOf lir&f(x),f is not continuous at x = 0
12 =0 =



(i) Since, polynomial functions are continuous at each point of Differential Calculus

R, f is also continuous at each x € R except possibly at x = 0.
At this point, we have

limf(x) = limx =0 # f(0).
x—-0 x-0
Thus, fis not continuous at x =0

Check Your Progress — 1

1. Evaluate the following limits:

()  limGx3+ 2x+1) (i) lim =2
x—o2 x—>2 x+2
x?—5x+2
(iii) lim ———= (iv) lim /3x%2 — 19
x—2 x—1 x—2
2. Evaluate the following limits:
x?—4 Vx—1-2
NI ! I
O L
3. Evaluate the following limits:
x7/6 — q7/6
(l) I;I’_I)la m (a > 0)
m _ gm
(ii) lim ————— (m,n are rational numbers,a > 0)
. xh — qn

4. Check the continuity of f at the indicated point where

f(X){Z—x ifx<0 atx =0

x+x ifx=0

5. For what value of constant k the function f is continuous at x =5 ?

x?—25

fx) = = if x#5

x_
k if x=5

1.3 DERIVATIVE OF AFUNCTION

Definition: A function f is said to be differentiable at x if and only if
 fx+ Ax) = f(x)
lim
Ax—0 Ax

exists. If this limit exsits, it is called the derivative of f at x and is
denoted by

1 dy
f*(x) or "

e, 2 = |jm [EHEO7T0) - £y
dx Ax—0 Ax
A function is said to be differentiable on an open interval | if it is differentiable

at each point of 1.

13



Calculus Example 11: Differentiate f(x) = x* by using the definition.
Solution : We first find the difference quotient as follows :

fx+ M) — f(x)  (x+Ax)%— x?
Ax B Ax

_x*+ 2xAx + (Ax)? - x?

Ax
_ Ax(Zx + Ax)
B Ax
= 2x + Ax

It follows that

flx+ Ax) — f(x)
Ax

=,

= lim (2x + Ax) = 2x
Ax—0

Remark: It can be easily proved that if f is differentiable at a point x, then f is
continuous at x. Thus, if f is not continuous at x, then f is not differentiable at x.

Some differentiation Rules

We now develop several “rules” that allow us to calculate derivatives without the

direct use of limit definition.

Theorem 1 (Constant Rule). The derivative of a constant is zero. That is,

d
B — 0
| = lc]
where c is a real number.

Proof : Letf(x) =c then

i[C] =f'(x) = lim flet Ax) - f(x)

dx Ax—0 Ax

= lim &f=90

Ax—0 Ax

Theorem 2 : (Scalar Multiple Rule). If f is differentiable function and c is a

real number, then

el = cf ')
Proof : By definiton
cf(x+ Ax) —c f(x)
Ax

d :
2 lf] = lim

_ fx+ Ax) = f()] _
= limc =

Ax—0 Ax

14

cf'(x)



Theorem 3 : (Sum and Difference Rule). If f and g are two differentiable Differential Calculus
functions, then

Sum Rule j—x[f(x) + g)]= ")+ g'(x)

Difference Rule j_x[f(x) —g)]=f"x)- g

Proof : We have

d .
2 S+ g()] =1lim

flx+ Ax) + glx+ Ax)-[f(x) + g (X)]
0 Ax

= lim
Ax—0

[f(x+ Ax) — f(x) gx+ Ax) — g(x)
+
Ax Ax

o flx+ Ax) - fo) glx + Ax) — g(x)
= lim + lim
Ax—0 Ax Ax—0 Ax

= f'0)+ g'(™)
We can similarly prove the difference rule.

Theorum 4 : (Product Rule). If f and g are two differentiable functions, then
@) g =f @) + g'() + /() + g(x)

flx+ Ax) g(x + Ax)-f(x) g (x)
Ax

d .
Proof: We havea [f(x) g0)] = hAr;l_)O

[ f(x+ Ax) (g(x + Ax)-f(x+ Ax) g () + f(x + Ax)g(x) — f(x)g(x)

=Alaicr—l>10 i Ax

- lim [ f(x+ Ax) (g(x + Ax)- g (x)) 4 (x)f(x +Ax) - f (%)

B Ax—0 | Ax 9 Ax

— 1y f(x + Ax) . glx+ Ax) — g(x) + o i [+ Ax) — f(x)
- IAIDI;1—>0 Ax IAI;LO Ax g IAIJ?—>O Ax

(using the product and scalar multiple rules of limits). Now, since f is
differentiable at x, it is also continuous at x.

“lim fOe+ ) = F(3)

d
Thus ——[f(x) 9] = f()g" (x) + () f'(x)

15



Calculus Theorem 5 : (Power Rule) If nis a positive integer, then
i ny — n—1
o (x™) =nx
For n =1, we have

SO = S =lm  fWIET =l = lim1 =1

x—0 AX Ax—0
=1=1x" =nx"*

If n> 1, then the binomial expansion produces

d x4+ Ax)" — x™
— (x™) = lim ( )
dx Ax—0 Ax

n n n n
— lim CO x"+ Cl x4 CZ X172 (AX) 2 e C“ Q)™ —xm
Ax—0 Ax

=lim [nx"™1+ ”(” RO Y 2Ax 4 e ot (AX)™Y]

Ax—-0
=nx"1,

Theorem 6: (Reciprocal Rule). If f is differentiable function such that f(x) # 0,
then

— )
dx [f (x)] [f ()]

Proof

a[ﬁ] - liAra?—»o i [f(x+ Ax)_ f(x)]

~ lim fx)_f(x+ Ax)
a0 | flx 4+ Ax)f(x)

= liArj?_)0 l— <f(x i A?x— [ )l [(f(x + 1Ax)f(x))]

==f"(x).

f(x)f(x) (“lim - (e +Ax) = f(x)
as f being diff. at x is continuous at x)
_ —f'®
[f (x)]?

Theorem 7 : (Quotient Rule) : If f and g are two differentiable function such
that g(x) # 0, then

A0 IOEIFW] - F@ f @)
ax[gGa | = PSR

16



. f(x) Differential Calculus

Proof: dx [g(x) ~ dx [f( )g(x)
1

> [f(x)] + f(x)—[ [Product Rule]

_ 1 9'(x)

= ()+f()+f( )[[()]]

_ 9Of' )~ f()g'(x)

[9(x)]?
Remark : The power rule can be extended for any integer. Indeed, if n = 0,
we have

d d
— (x™= — (1) = 0=0x"1 x # 0,

dx dx
and if n is a negative integer, then by using reciprocal rule we can
prove

— (x") =nx™1

7 &)

Thus we have

— (x™) = nx™}, for any integer n.
y g

dx
Example 2 : Find the derivatives of the following function .
1
o - 5 __ - —
(i) y = 2x 3x ) y 13
xZ
(i) y=— V) y = 5
. N dy _d 5
Solution : (i) - A (2x> — 3x)
d d
PO B o
—de (x>) 3dx(x)
=12, 5 o 84
= 10x* -3
d
(i dy —gxl*+3] el el
ii dx - 213 [using reciprocal rule]
2
© (x2+3)2

17



Calculus

18

dy (x+2)j—x(x)— xj—x(x+2)

(iii) - a1 (Quotient Rule)

B (x+2).1-x.1

T (x+2)2

_ 2

(x4 2)2

d d
2_5y % 2y 24 2

(iv) % = & ) d@x (();2)_ 5);2 ax ) (Quotient Rule)

(x2 =5)(2x ) — x2 (2x)
(x? —5)?

2x3 —10x — 2x3 —10x

(Z-52 GF-5)

Derivative of Exponential and Logarithmic Functions

To find the derivatives of the natural exponential function e* and the natural
logarithmic function Inx, we need the following limits.

e*—1

(D lim =1

Ax—0

@ limEO

Ax—0

X

Theorem 8 : The derivative of the natural exponential function is given by

d XY — X R
a(e)—e (x €R)

Proof : By definition

d
(X)) = i
dx(e) hArJ?—>O Ax

|

Q
X
~
[\
—



Theorum 9 : The derivative of the natural logarithmic function is given by Differential Calculus
d 1
—(lnx) = = >0
oy ()= — (x > 0)

Proof : By definition

In(x + Ax) — Inx

0 Ax

-1 1l(x+Ax) o Inb = In"
= kryﬁoﬂnf(- na-Inb = nz)

1 Ax
=lim —In (1+ —)
Ax—0 Ax X

d .
a(lnx) = llAr;l_)

1 In (1 + %)
=lim —— %/
Ax—0 Ax Ax/x

1 In (1 + Ax_x)
== —llm T
xAx—>0 /x

Corollary : Ifa>0and a # 1, then the derivative of the general logarithemic
function is

1

—;()—;

d 1
a (logg x) = ; log, e
Proof : We know that

log, x = (Inx)(log, e)
= 2 (log,x) = 2 [(logn
——(logg x) = —[(logx) (10g, ©)]
d
= logaea (logx)

—x(ogae)

Remark : Similar to the proof of theorem, we can prove that if a> 0, and a # 1,
then the derivative of the general exponential function is

d
Tx (a¥) = a*lna (x€R)

Example 13 : Find the derivative of the following functions.

() x%e* (i) nx
. X
(iii) (iv) 5%Inx

x2+3

19
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Calculus

Solution : (i) Using the product rule
C (x2e*) = 4 (x?)e* + xZi (e*)
dx dx dx

=2x e* + x%e* = (2x + x?) e*

(1) Using the quotient rule, we have

d d
d ln_x _ xa(lnx) - lnxﬁ(x)

dx x " x2
S (Inx)(1)
= "

1-—Inx

(i) Using the quotient rule, we have

d d
i( e* )z(x2+3)a(ex)—exa(x2+3)
dx \x?>+3 (x? + 3)2

_ (x*+3) (") — e*(2x)
B (x2% + 3)?

_ (x* = 2x +3)e”
 (x2+3)2

(iii)  Using the product rule, we have

dS"l —del +5"dl
dx( nx)—dx( )Inx dx(nx)

(5*Inx5) + 5% (3)

= 5*(ns)inx + ().
Check Your Progress — 2

1. Find the derivative of each of the following functions.

_ 5 4 y 2x—1
(i) y =x>- 3x*+ 2x—-1 (ii) y = —
(i) 3x+ 5 _ x4
t 2x + 7 ) vy ==3



2. Find the derivative of each of the following functions.

X

() e“Inx (ii) - !
X
(i) — (iv) % 4 x2 4 22
e’ : A, x
(V) N (vi) 5%e

3. Using the limit lim0 % = [na, prove that%(ax) = a* Ina, where
xX—

a >0 and a#l.

1.4 THE CHAIN RULE

We now discuss one of the most powerful rules in differential calculus, the chain
rule, which deals with composite of functions.

Theorem 10: If y = f(u) is differentiable function of uand u = g(x) is a
differentiable function of x, then y = f (g(x)) is differentiable
function of x and

dy  dydu
dx  dudx

or, equivalently, ;_x[f('gx))] = f'(g(x))g’ (x).
Proof : Let (F(x) = f(g(x)). We have to show that for x = c,
F'(c) = f'(9((c)g’ ().

An important consideration in this proof is the behaviour of g as x approaches c.
A problem occurs if there are values of x other than ¢ such that g(x) = g(c).
However, in this proof we shall assume that g(x) # g (c) for values of x other than

c. Thus, we can multiply and divide by the same (non- zero) quantity g(x) — g(c).

Note that as g is differentiable, it is continuous and it follows that g(x) — g(c) as
X~ C.

flg() = flg(e)

F'(c) = lim
xX—C X —C
 [fg@) = F(g()) g(x) = g(c) .
= lim TG . [“g9(x) # g(c)]
—_ flg) - flgle)) . gx) = g(o)
= lim lim ——
x-c g(x) — g(c) x-c X —->C
= f'(g(c)g’(c)

Remark : We can extend the chain rule for more than two functions. For
example, if F(x) =f[g(h(x))], then

F'(c) = f'[g(h(©))]g’ (R())R (c).

Differential Calculus
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Calculus In other words
dy dydudv

dx ~ du dvdx

Example 14 : Find the derivatives of the following functions.

2

(i) y=@+1)° (i) y=e*
(iii) y=In(2x*+¢ (iv) y= (x+Inx)?
Solution : (i) Putx*+1=u

Then y=u® whereu=x*+1
dy du
du dx

2

3u 2x

Then by the chain rule

dy dydu )
T dude - (Bu®)(2x)

= 6x (X°+1)?

(i) In this case we take x°= u, so that y = e*

Then by the chain rule,
dy _ dy du o _ 2
- duda- (e")(2x) = 2xe*".

(iii) Takeu = 2x% + e*,sothaty = Inu.

Then
dy dydu
dx  dudx
—_ 1 4 + X
=~ (4x + ")
_ 4x + e*
T 2x2%2 4 eX

(iv)  Takeu=x+ Inx, sothaty = u?

Then
dy dydu 1
a = 'd—ua = (21.1) (1 + ;)

1
= 2(x + Inx) (1 + ;)
We will now extend the power rule
n—1

—(x™) =
dx(x) nx

to real exponents. We will do this in two stages — first to rational exponents and
then to real exponents. We shall use the chain rule.

22



Theorem 11 : For rational values of n

i (xn) 4 nxn—l
dx

Proof : Letn= p/q, where p, g are integers and g > 0. Then nq = p is an integer.

Let u = x™ and consider the equation.
(x™M9 = x™ = xP orul=xP ................... (1)

Now differentiate (1) using the chain rule on the left and the power rule (for
integers) on the right to obtain

du
q-1 ___ — p—1
qu dx px
d xP~1
= (") = s
dx qui~1
Butu? 1=/, = xp/xn, because u = x™. Thus
p—1
i xn) — p;cp = nxP~ 1P = pyn-1
dx q /xn

Theorem 12 : For a real number n

-1

Now put u = ninx, so that x™ = e*. Then by the chain rule

d d du d n
o O = o (e = (@) o i) = (") (3)

Example 15 : Find the derivative of each of the following functions:

) y= @2+2)?° (i) y=e*
(iii)  y=InQ+V1+x?) (iv) y=x2e*
Solution : (i) Putting u = x* + 2, we have
2
dy 37 1d
a =§(2+2) E(XZ-FZ)

2
= §(x2 +2)71/3(2x)
_ 4x
- 3(x2+ 1)3

Differential Calculus
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Calculus (i) Puttingu =+/x, we have

d d 1 "
D E L () =T =
dx dx Vx x
dy 1 d
Sy 1 @ 2
(iii) I 1+mdx(1+ 1+x)
! ! 1+ x?%)
= — X
1+ V1+x2 2V1+x2dx
™
= X
1+ V14+x2/\2vV1 + x?
~(Grsee)
(1+ V1+x2)V1+x2
(iv) Ir - dx (x*)e* + x dx(e )

d
= 2x e* + x%e*’ o (x?)

= 2xe* +x2% e**(2x)

2x e** (1 + x2)

Example 16 : Find the derivatives of following functions :

. 3 Vi+x—-V1—x £ | ete=
0 () gy,

(i) y=3x(x+ D +2)

Solution : (i) Rewriting the argument of the log, we have

Vitx—Vi-x VI+x—-V1-x VI+x—-+V1-x
Vitx+vi—x Vitx+Vi—-x Vitx—+Vi—x

_ (W1+x—-+vV1-x)?
A+ x)-(1-x)

A+ + 1-x)—-V1+x V1—x
h 2x

2-V1-x2  1- Vi-x?

2x X



Therefore, y =1

. (\/1+x—\/1—x>
Vi+x+V1-x

(1—\/1—x2>
=In|————
x
=In (1- V1—-x2)—Inx
d 1 d 1
:_yz S — _(1_ (1—x2)_1/2) _ Z
dx 11— 1—=x2 dx x
1 d 1 1
— 0 (1 _ 2Y-1/2(_ _
[1_\/1_352 {de 2(1 ¥ 2x)} xl
1 X 1

T 1-Vi-x2Vi-x2 X

2 -[V1I=x2 (1= VI-22)]
I x2(1- Vi—x?)

X2 =V1-x% +(1-x?)
- V1 —x%2(1—- v1—x2)

~ 1- VI—x2 1
T WIoRA- Vi) oi-x2

Q) One can apply the quotient rule in this case. However, we will avoid
it by rewriting the given expression.

1
Y_e"+e"‘_ex'|'e—x_e2x+1_e2x—1+2
Cer—ex 1 T ex—1 e —1
€ e

2

=1+ e2x—1

=142 (e — 1)1

d d
= o 04 2(~1) (e — 1) 2 (e — 1)
dx dx

-2 —4e%%

T (er . | 1)2 (zezx) & (er — 1)2

(i) We have y = [x(x + 1)(x + 2)]%/3

So,— = %[x(x + D(x+ 2)]%_1 % [x(x + 1)(x + 2)] (chain Rule)

2

= %[x(x + 1) (x + 2)]_5% [x(x + 1)(x + 2)] (product rule)

= %[x(x + 1) (x + 2)]%%[& + D +2)+x(x+2)+x(x+1)]

Differential Calculus
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1 o 1

= §[x(x+1)(x+2)]_§ x(x+1)(x+2)[;+x+1+x+2
1 13 [1 ! s

= 3G+ DG+ [;+x+1+x+2]

Check Your Progress 3

1. Find the derivatives of each of the following functions :

W) y=G+0)7 (i) y=in(%)
(iii) y = ™" +2%) (iv) y=In (x+vx)

2. Find ay where
dx

: OiC| . % x
My =—% (i) y = ——
(iii) y=2%/nx

3. Differentiate each of the following functions :

0 y=nler (52" i) y= =

x+2 1+x

VaZ + 14 Vx2 -1
\/x2+1—\/x2—1

(i) y =

1.5 DIFFERENTIATION OF PARAMETRIC FORMS

Suppose x and y are given as functions of another variable t. We call t, the
variable in which x and y are expressed as parameter. In this case, we find

% as follows :

Let x = f(t) and y = g(t),where f and g are differentiable functions of t and
f'(t) # 0 vt Let Ax and Ay be the increments and x and y respectively,
corresponding to the increment At int. Thatis Ax = f(t + At) — f(t) and

Ay =g(t+ At) — g(t)

Since _y= lim A_y
dx Ax—~0 Ax

and Ax - 0as At — 0, we can write

dy g(t+At) — g(t)

dx  hxso F(E+AD) — f(D)

Dividing both the numerator and denominator by At, we can use the
differentiability of f and g to conclude that



g(t+ At) — g(t)]
dy liza
dx  bxoo [f(E+ At) — f(t)]

AGH dy/dt
T () dx/dt

d
Example 17 : Find d_ic] when

(a) x = at?, y=2at
(©)x =Int,y = 1/t

Solution: (a) We have

dy d 3
—_ — = 2
%) 1 [at~] at

d
and IR [2at] = 2a

d
’/ar

S0,—= ————= —— =
dx dx/dt 2at

(b) We have

dy 2a 1
t

(d) We have

dx_ d 3at]
dt  dt |1+ t2

dy 1/t _

(b) =ct, y=¢/;

d)y = 3at

@y = 1+¢2
— [ct™1]

Differential Calculus
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andx . d_ 2
(1+t)dt t o 1+t
(14 t2)?

= 3a

(1+t2)(1) —t(2t)

(1+t2)?
(1-1t%)
= 34—
(1+t2)?
dx 3at?
at (1 + t2)

1+t (tz) -t 7 L (1+1¢)
(14 t2)?

= 3a

(1 + ¢2)(2¢t) — (t?) (2b)

(1+t2)2
_ bat
(14122
i dy dy/dt
e A T dxjde
we get
6at
dy _ /(1 + t2)2
dx  3a(1-—t?) /
(1+t2)?
2
11t

Second Order Derivatives

Let y = f(x) be a function. If f is a differentiable function, then its derivative is a
function. If the derivative is itself differentiable we can differentiate it and get

another function called the second derivative. The second derivative is denoted
2

d
by y or f (x) or d_x);

Thus
d’y d (dy)
dx?  dx \dx

d*y  2lnx -3
dx? x3

Inx
Example 18 : Ify = " show that

Solution : we have

dy [lnx d
dx

-1
= dx [x~tinx]



Differential Calculus

d d
= — -1 -1__
Ix (x Hinx+ «x Tx (Inx) (product rule)

= (- Dx~2nx+ x71-

=x"2[1-Inx]
Differentiating both sides with respect to x, we get

dy d _ _, , d
W_E[x 1[1—Inx]+ x a[l—lnx]

—(_ -3¢1 _ -2(n_1
=(-2)x(1—-Ilnx) + x (O x)
=—2x3(1—lnx) + x73

= —x"3(2-2Inx + 1)

\. 2lnx — 3

x3
2
Example 19 : If y = ae™* 4+ be™™*, show that % = m?y

Solution : We havey = ae™ + be ™

< (ae™ + be ™)

Differentiating both sides with respect to x, we get Z—Z = —

= ame™ — bme ™™

= dz_y = — (ame™ — bme™™)
dx? dx

=am?e™* + bm?e ™
=m?(ae™ + be ™)

Example 20 : If y = In (x + \/x2 + 1), prove that

d’y dy
2 —_— =3 £
¥+ 1) =H+x—==0

Solution : We havey =In (X + {/x2 + 1)

Differentiating both sides, we get

dy ! d[+(2+1)%] (chain rule)
—_— = | X X chaln rule
dx  x+4++Vxz2+1dx
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_ [1 +l (x? + 1)‘%(2x)]
x+VxZ+1 2

= L1+ 2
T L

x+Vxt+1

1 '\/x2+1+xl
x+Vx2+1] Vx2+1

1 L, Ll
B x2+1 = @t

a2 1 d
L= (— E) (0% + 1)‘%a (2 + 1)]

1 1 —X
= - 2x =

2 3 3
(x*+1)2 (x2 +1)2
2

dy dy

Now, (x?% + 1) et Xy,

—X 4 1
X
3
(x2 + 1)2 Vx2+1

(x%+1)

X X,
Vxz+1 Vx2+1

d’y _dy
2 =
Thus, (x* + 1) Tx? + x I 0

Check Your Progress — 4

1. Find d—ywhen
dx
1. Find ﬂwhen
dx

(a) x=%(e9—e9) and y:%(ee—e")

(b) x:a(t—%j and y:a(t+%]

_al-t?) _ bt
©  x= (1+1%) Y 1+t

2. Ify=vT +x2, find 22

3. Ify=In(vx =1 ++/x + 1), prove that

d*’y  dy
2 _ —_— —_— =
(x 1) Tx? + xdx y

30



xd?y  xdy Differential Calculus
+ —=——-y=0
dx? dx

b
4. Ify = ax +;,showthat

1.6 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress — 1
1. (i) lirré GBx3+2x+1)=3.2)3+2(2)+1=29
xX—

S x—2_2—2_0_0
(i) xT; x+2 242 4

Gi) 1 x*=5x+2 22-5(2)+2
"L 11T ~ 21

(iv) lin%?VBxZ —19=3/3(3)2-19= 27-19= V8 =2
X

Lo x4 (e +2)(x=2)
2. (1)x_l)12mx+2—}cl_rg P —xll)rzlz(x—Z)——Z—Z——éL

vx—-1-2 K\/x— —2><\/x—1+2>l
x—5 x—5 m+2

i

. (x—1)—4
= lim
5 (x=5)(Vx—1 +2)
. (x—-5)
= lim
5 (x —=5)(Vx—1 +2)
) 1 ) 1 1
=lim ———— = lim ——— = -
5 (Vx—1+2) *5w5-1+2) 4
7/6_ ,7/6
3. () i X35 — @35 & x3/5 — q3/5
xX—a
_ x7/6 _ q7/6
L S =y T /L) L il a X" —at )
lim x3/5— a3/5  (3/5)a3/571 x—sa X —a
xX—a X —a

35 aql/¢ 35 17
= — ———= — 30
18 a-2/5 18 ¢
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Calculus B ) m _ am ) (xm — am)/(x_a)
(ii) lim ——— =lim

xsa XP—a'  x-a (x"— a")/(x — a)
lim X7 — o't
x—»>a X —4a
le — an

4. We have
e N R

- lipl2- (1= G+ = 2

and lim  f(0 = limf0+h) = lim (F(W) = lim (2+h)=2

Thus, lim f(x) = limf(x)=2 = limf(x)=2
x=0~ x-0% x-0%

Also, f(0)=2+0 =2
lim f(x) = f(0)
x—-0

Hence, f iscontinuous atx =0.

5. For f to be continuous at x = 5, we must have
f(5) =lim f(x)
x-5

2 _ 5 —5)(x +5
= k= lim = N C GO
x5 X—25 x5 x—5

So, k=lim (x +5) =5 +5=10
o e d

Thus, k=10

Check Your Progress 2

N4y _d 4 - 4 3
1. (i) T —E(x—3x +2x-1) = 5x*-12x°>+2
(i dy d2x—-1 1 d @ D= 2
" dx —dx w?  mrdx - w2
d d
dy (2x+7)ﬁ(3x+5)— (3x+5)ﬁ(2x+7)
(i) —= =
dx (2x + 7)?

32
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Differential Calculus

_ (2x+7).3— (3x+5).2

(2x +7)?
) ) A&
- (2x +7)2
By d (-8 )@ (P - ()
(IV) _y et (x _ >= dx dx
dx dx \ x3 (x3)?
x3(3x%) — (x3—4)(3x?)
= pr-
x6  x*

d d
g x L x x
(i) # (e¥Inx) e (eMinx +e P Inx

— e* _ 1
= (e*lnx) + —= e*(Ilnx + ;)

d (ex) dx (e*) = (eM) g dx (x? ) _e*(x—2)

(ii) dx \x? x4 x3
iy X i) — () e ()
(iii) dx ( ) (x3)?

1\ d s 2
X (Inx) o (3x9)

x6

x%(1-3Ilnx) 1-3inx
x© R

d d d
(1V) — (Zx +x242?%) = —(Zx) +—(x2)+ (22)

=2%n2+4+2x+0

=2*¥In2+2x
St @2+ 7L ()= @)L x2+7)
Viax \x2+7 (x2 4+ 7)2

(x4 7)e* —e*(2x)
h (x2+7)?

e[ x? = 2x+7]
(x2+7)2
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Calculus i) d (5%e%) d Exye¥ 4 5"di x
—_ = — X
vi I e I (5Me (e

5%In5 e* +5% e*

5%¢*(In5+ 1)

=a*lna (using the given limit)

Check Your Progress — 3

dy 3 5 d
1 () % = S0 (40

3
= E(x3 + x)1/2 (3x? + 1)

d 2 d 2
(iii) d_ic} = el +2")a(xz +2x) = e(®**2)(2x 4 2)

= 2(x + 1)e(x*+2x)

dy 1 d 1 ( 1)_ Ve+1

UYL om 3 x+\/fa(x+\/})= x +Vx 1+% Vx(x + V)

by - ene — (1- )L (e)
dx (e2%)2

_e¥(—e)— (1— e)(2e*) e*-2

e4x er

34



d d
(i dy _ Va2 =1 () —x -y (x2 =1
2
i WG
gl
” (x2-1)
B x2—1
(x*=1)— x* -1
(x2 —DVaz—1 (x2—1)3/2
dy N d ; x
A /in2 (=
(iii) e 2x In2 P (lnx)
L s 1.Inx —x.=
7/ (Inx)?

2x*" % 2 (Inx — 1)
(Inx)?

3. (i) Rewriting the given expression, we have

y=In [ex (;_;;)3/“]

3

=1 x+l<x_2)4 In(ab) = Ina + Inb

=Ine nx+2 [[n(ab) = Ilna nb]
3 -2

= xlne ot In (%) [lna®* = xlna]

X+ % [In(x—2) — In(x + 2)] [In(e) =1 and In(a/b) = Ina— Inb]

1 1
XxX—2 x+2

= —1’+3[
g 4

3 [(x+2)— (x—2)
4 | (x—2)(x +2)

‘x+2—x+2]
x2 —4

_x2—4+3_ x2 -1
T o x2—4  x2—4

Differential Calculus
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Calculus 3 1—x
W 7= (53)

1,
. dy_l(l—x)z d (1—x

Cdx 2\1+x)  dx 1+x) &

dx

1 A-xn A+ 0D - A-0@)
- 3 ()

1+ )2 (Quotient Rule)

e =i 1+x
(14 x)? J1-x

(iii)  Rewriting the given expression, we have

VEAHD +YEE -1 JER+HD) +YEE -1 JE+HD V-1

y_ =i
Je+D -Jee-n Je@+D -V -0 V@D -V - D

_(«/(x2+1) +y(x2-1) )2 @D+ -D+YE+FDEE -1

x2+1) —(x2-1) 2
2x% + Yx* =1
= > = x% + (x* - 1)/?
dy d

d 1
== () + (= 1)7]

1 1d
_ St —1V3 4 _
= 2x +2(x 1) de(x 1)

1
= 2x + - (4x3)
V&T=D
2x3
= 2x + ——
(x*—1)
Check Your Progress 4
dx
o _ 0 -6
1. (a) 70 (e +e")/2
dx
(o0 _ -6
70 (e e ")/2
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Differential Calculus

dx 1\ dy 1
by = “(”t—z)’ @ —b(l‘ t—z)

dy
/at b(1 - tlz) b -1)
B Ca(t?+1)

dx _ a(l+t?)(—2t) —a(l —t?) (2t) (Quotient Rule)

© 1+ t2)2
_a[=2t — 263 — 2t + 2t°]
(1+t2)2
_ —4at
T (1+¢2)?
dy 2h (1—-t2)(1) — t(2t)
dt (1 +t2)2
_ 2b(1-t?)
] —4at
. dy dy/dt  2b(1—t?)  —b(t>-1)
Cdx  dx/dt . —4at  (1+t2)2
dy _ 271 — 1 2 1—1 d 2
Ir —a[(1+x ] = 2(1+x )2 dx(1+x )

1 1
=3 (1+x%)27(2x)
= x(1+x2)"1/2

d? d 1 d 1 d 1
adta 1 a[x(1+x2)_§ = a(x)(1+x2)_§+xa(1+x2)_f

SR

=LA+ a1+ )T (2]

1
=(1+x2)72—x2(1+x%)73/?

1
x? l _(A+x»)2 1

1
= (1 22 11— = =
(1 +x%) l 1+ x2 1+ x2 (1 + x2)3/2
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Calculus 3. Wehavey=In( Vx—1 + Vx + 1)

B 1 ( 1 4 1 )
CVa—T +Vx+l Wa-1 Yx-1

_ (Vx—1+4++vx+1)
S 2(Wx—1 Ve DVx—1Vx+ 1

1
= E(xz - 1)_1/2
1 Y :
= _ Z[(,CZ —1) 2 7(2x)] (Chain Rule)
1
h W Ex(xz B 1)—3/2

1 1
= —5x(? =DV + —x(x? -7V =0,

4. When havey = ax+9
X

. dy b dzy d B _ Zb
i a—a—x—andﬁz d—(a—bx L= 2b 30 23
artrgy = o (o) e3)
2b b b

=—+ax———ax ——
X X X

38
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Differential Calculus

1.7 SUMMARY

In section 1.2 of the unit, to begin with, the concept of limit of a function is
defined. Then, some properties of limits are stated. Next, the concept of one-sided
limit is defined. Then, the concept of continuity of a function is defined. Each of
these concepts is illustrated with a number of examples.

In section 1.3, the concepts of differentiability of a function at a point and in an
open interval are defined. Then, a number of rules for finding derivatives of
simple functions are derived. In section 1.4, chain rule of differentiation is
derived and is explained with a number of examples. In section 1.5, the concept
of differentiation of parametric forms is defined followed by the definition of the
concept of second order derivative. Each of these concepts is explained with a
number of suitable examples.

Answers/Solutions to questions/problems/exercises given in various sections of
the unit are available in section 1.6.
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