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2.0 INTRODUCTION

All the numbers with which we have dealt so far were real numbers. However,
some solutions in mathematics, such as solving quadratic equations require a new
set of numbers. This new set of numbers is called the set of complex numbers.

If we solve the equation x? = 4 for x, we find the equation has two solutions.
x2=4=>x=V4=20rx==-V4 = 2.

If we solve the equation x> = — 1 in a similar way, we would expect it to have two
solutions also.
x% =—1should imply x =v/—1 orx=—v—-1.

Each proposed solution of the equation x? = — 1 involves the symbol +/—1. For
years it was believed that square roots of negative numbers denoted by
V=5,v/—2and +—6 were nonsense. Inthe 17" century, these symbols were
termed imaginary numbers by Rene Descartes (1596-1650). Now, the imaginary
numbers are no longer thought to be impossible. In fact imaginary numbers have
important uses in several branches mathematics and physics.

The number +/—1 occurs so often in mathematics, that we give it a special
symbol. We use better i to denote v—1. Since i stand for v—1, it immediately

follows that i2 = —1. The power of i with natural exponent produces an
interesting pattern, as follows :

it=i, i?=-1i%=—i, i'=1, i°=i, i%=-1, i'=—1i, i®=1
alsh i =y, - B NN €L
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2.1 OBJECTIVES

After studying this unit, you will be able to :

¢ define complex number and perform algebraic operations such as addition,
substraction, multiplication and division on the complex numbers;

¢ find modulus, argument and conjugate of a complex number;

e represent complex numbers in the argand plane;

e write polar form of a complex number;

e Use Demoivre’s theorem; and

¢ find cube roots of unity and verify some of the identities involving them.

2.2 COMPLEX NUMBERS

Definition : A complex number is any number that can be put in the form a+ bi,
where a and b are real number and i =+/—1. The form a + bi is called standard
form for complex number. The number a is called the real part of the complex
number. The number b is called imaginary part of the complex number.

We usually denote a complex number by z. We write z = a + bi. The real part of
z is denoted by Re (z) and the imaginary part of z is denoted by Im(z).

Complex Numbers
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Figure 1
If b = 0, the complex number a + bi is the real number a. Thus, any real number
is a complex number with zero imaginary part. In other words, the set of real
numbers is a subset of the set of complex numbers.

Equality of two Complex Numbers

Two complex numbers are equal if and only if their real parts are equal and also
their imaginary parts are equal.



Thus if, z; = a + bi and z, = ¢ + di are two complex numbers, then z; =z, that
is,atbi=c+di ifandonlyifa=candb=d.

Examplel (a) Findxandyif3x+4i=12-8yi
(b) Findaandbif(4a-3)+7i=5+ (2b—-1)i

Solution :
(@) Since the two complex numbers are equal, their real parts are equal and their
imaginary parts are equal :

3x = 12and4 = 8y >x=4andy = —-1/2

(b) The real parts are 4a— 3 and 5. The imaginary parts are 5 and 2b — 1.
4da-3=5and7=2b-1=> 4a=8and2b=8 = a=2and b = 4.

2.3 ALGEBRA OF COMPLEX NUMBERS

Addition of two Complex Numbers

Two complex numbers such as z; = a + bi and z, = ¢ + di are added as if they are
algebraic binomials:

z1+z,=(@+b)+(c+d)=(@+c)+(b+d)i

Observe that a + bi = (a + 0i) + (0 + bi). In other words, a + bi is the sum of the
real number a and the imaginary number bi.

Also observe that z; + z, is a complex number.

Illustration

() (3+40)+(7-60)=@+7)+(@4-6)i=10-2i

(i) (8-3i)+(6-20)=(8+6)+(3-2)i=14-5i

Subtraction of Complex Numbers

If z;=a+ biandz, =c +di, we define z; — z; as z; + (- 2»).

Thatis, zz7— zz=(@+bi)+((~c) +(-d)i)=(a-c)+(b-d)i
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Example 2

Fill in the blanks

(i) ~4+100)+(-1+2i)=.... (i) (-6+171) +(4-11i) =...
(i) 4+2)+(7-2i)=.... (iv) 3-5i)+(-3+51i) =...
Solution

(i) —5+12i (i) — 2+ 6i

(iii) 3 (iv) 0

Example 3

Fill in the blanks

(i) -@+4i)y=............. (i) B-2)-(4-3)=..............
(i) @+3)—()..ccvvnnnnnn (iv) (GB+2)-2=.............
Solution

(i) -3-4i (i) —1+i

(i) 2+2i (iv) 3+2i

Multiplication of Complex Numbers

Two complex numbers such as z; = a + bi and z, = ¢ + di are multiplied as if they
were algebraic binomials, with i? = —1;

21 7, = (a + bi)(c + di) = (ac — bd) + (ad +ho)i

By definition, product of two complex numbers is again a complex number. Also
observe that yi = (y + 0i) (0 + 1i) and is, thus the product of the real number y and
the imaginary number i.

Ilustration 1
(3+2i) (4+5i)=12+5i +8i +10i° =12+ 15i +8i—10=2 +23i [-i* = 1]

and (2 + 5i )(7 + 3i) = 14 + 6i + 35i + 15i* = 14 + 6i + 35i — 15 = — 1 + 41i
[-i%=-1]



Example 4  Perform the indicated operations and write the results in the form
of a+bhi

(i)  (2+3i)? (i) @+i)?
(i) (V5 +7i) (V5 - 7i)
Solution
0) (2+3i)? =(2+3i)(2+3i)=(2) 2) + (2) (3i) + (2) (3i) + (3i)(3i)
=4+6i+6i+9i°=4+12i-9=-5+12i
(i)  (+i)’= Q+i) Q+i) A+i) = QA+i+i+id) (A+i)= Q+i+i—1) (1+1)
=2i(1+i)=2i—2i%=—2+2i
(i) (V5+7)(5-70)=W5(5)- (V5)7)+ (V5)(7) - (7)(70)
=5+7(W5i)—7(V5i)— 49i2 =5+49 =54
Multiplicative Inverse of a Non-Zero Complex Number
If a + i b #0 is any complex number, then there exists a complex number X + iy
such that
(@+ib) (x+iy)=1+0i=the multiplicative identity in C.

The number x + iy is called the multiplicative inverse of (a + ib) in C.

Now, (@+ib) (x +iy)=1+0i= (ax—by ) +i(ay—bx)=1+0i
[multiplication of complex numbers]

= ax—by=1landay+bx=0 [equality of two complex numbers]
= ax—by-1=0anday +bx=0

Solving these equations for x and y, we have

a

i @
y_a2+b2 (2)

both of which exist in R, because (a + ib) # 0 i.e., at least one of a, b is different
from zero.
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Thus, the multiplicative inverse is of a + ib is

a 5 a a—ib
_l =
a? + b? a?+ b* a’+ b?

x+iy=
Thus, every non-zero complex number has a multiplicative inverse in C.
Division in Complex Numbers

If Zi=x+iyand Z;=a+ib#0,
then

Z  x+iy
Z, a+ib

, 1
(x+l3’)m

B : (a —ib)
= (x oF ly)m

_ ax+by+ bx —ay
T a2+ b2 ez b2

1 — 4100

) =a+ ib,thenshowthat a=1andb =0
1+

Example 5 If (

Solution: We have

1—i  (A-D@a-9 _ @a-0)?
1+i (A-D@+1i) 12—

1-2i+ 2 1-2i—-1
2 N 2 N

1— 100 100
Thus, (E) =(—1i) =1
s.atib=1=a=1landb=0

Example 6 : If x =— 2 —v/3 i, find the value of 2x* + 5x° + 7x* — x + 41.

Solution :

Xx=-2-V3i,2x+2=-V3i=> (x +2)2=(—+V3 i)?
= X+ax+4=—30r x> +4x+7=0



We now divide 2x* + 5x + 7x* = x + 41 by x* +4x +7

X +ax+7 [ 2F+5C+ T —x+41 \ 2x°—3x+5

2x* +8x3 + 14 X2
e o S)

_3x3-T X x+41
_3x-12 %% - 21x
(O] (O] @
5x° +20 x + 41
5x%+20 x + 35
© o S)

6
Thus, 2x* +5x3 + X = x + 41 = (¢ + 4 x+ 7) (2 X*-3x + 5) + 6
=(0) (2x*—3x +5)+6=6
- valueof 2x* +5x3+ 7x*—x+41forx= —2—+/3i is6.

Check Your Progress - 1

1. s the following computation correct ?

V=5v=7=/(=5)(=7) =35
2. Express each one of the following in the standard form a + ib.

Loy 22 G L (iv) i::

5—-4i 2—-71 cos@+iSin 0

4

(i)

4

3. Find the multiplicative inverse of

+1i

0 () 1+ V302 (i) (L+i)(L+2i)
4. Find the value of x* — 4x% + 4x* + 8x + 40
when x=3 + 2i.

5. If (x + iy)'/3 = a+ib, prove that

x -y
- Z =4 2 _ 12
a+b (a” - b?)

6. Find the smallest positive integer for which

(1+i )"_1
1—1i B
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24 CONJUGATE AND MODULUS OF A COMPLEX
NUMBER

Conjuate of a Complex Number

Definition: Ifz =x+iy, X, y€ R isacomplex number, then the complex
number x — iy is called conjugate of z and is denoted by Z.

For instance,

2+43i =2-3i,3-4i =3+44, i =—iand

= 340i=3-0i =

wi
w

Some properties of Complex Conjugates

1. Z=27 2. z1Zy =4 2
3. L ehnh 4 (H)ERE R0
5 If Z =a+ib, then

Z+Z=2a=2(2
and Z —Z2=2ib=2iIm (2

< Zisreal

I
VN

6. Z

7. v eyt & Zis imaginary

Modulus of a Complex Number

Definition : If Z =x + 1y, X, y € R is a complex number, then the real number
Vx2 + y?is called the modulus of the complex number Z, and is denoted by |Z].

For instance, ifZ=2+3i,then|Z|=v22+ 32=v4+ 9= V13
and if Z=5-12i,then |-Zl =./52+ (—12)2 =25+ 144 = V169 =13
Note that

2l =1-Z| = |- Z| = |ZI.
and if c is a real number, then |cZ| = |c| |£]
Some properties of Modulus of complex numbers

1. |Z|2=2Z 2. [21=0<2=0



1

3 E:WWZ;&O [21Z2| = | 21| | Z2l
Zq |Zq|

5. 2] =Zlifz#0 6. —|Z|<Z<|Z
A N ] Bi o “

7. |21+ 250%= |21 2+ 22| %2 + 242, + 242,

= |&1| * + |&2| 2 + 2Re(Z1%,)

Example 7:  If a+ib # 0, show that

‘a—ib _
a+ibl

Solution: Let Z=a+ib,thenZ=a—ib

Since |2 | = |Z|, we get

_ 2 _ | |_ a—ibl
"1z lzl T la+ip

a+ib az+b?
Example 8: If x +iy = ,then  x%+y?= ,/—Cz+dz

H . . N2 a+ib
Solution : (x +iy)° = i
_|a+ib

G+ 21 =[5 |

ib
I e W

c+id |Z2|

2+b2
= (Vx2+y ) - a2+d2

" - a2+ b2
=X°+ Y° T\ 24 a2

Example 9: If (a—ib) (x+ iy) = (a® + b?)i and a + ib # 0, show that x = b and

y=a.
Solution: LetZ=a+ib,thenZ Z = a? + b?

Now,  (a+ib) (x—iy) = (a® + b?)i

= Z(x+iy)=2Z%i
= x+iy=Zi=(a—ib)i=ai+b
=>X=b, y=a

Al

Zl_

Z2

|4

| 22|

[by definition of equality of Compex Numbers]
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Check Your Progress — 2

: 1-1iZ :
1. LetZ=x+iyand o = Z__li . If| o | =1, show that Z is purely real.
2. If |[Z| =1, Z #+ —1 show that
-1
241 is purely imaginary
3. If 2 — 1| =2 + ||, show that Im (Z) = 0.

4. If(a+bi)(3+i)=(1+i) (2 +i), findaandb.

5. If (Cos@+iSing) 2= x + iy, that show x2 + y2 =1.

2.5 REPRESENTATION OF A COMPLEX NUMBERS AS
POINTS IN A PLANE AND POLAR FORM OF A
COMPLEX NUMBER

Let OX and OY be two rectangular axes in a plane with their point of intersection
as the origin.

Ya

P(x,y)

O] x | X

Figure 2
To each ordered pair (x,y) there corresponds a point P in the plane such that the
x-coordiante of P is x and the y — coordinate of P isy. Thus, to a complex number
z = x +iy where corresponds a point P (x,y) in the plane. Conversely, to every
point P"(x", y' ) there corresponds a complex number x” + iy".

Thus, there is one-to-one correspondence between the set C of all complex
numbers and the set of all the points in a plane.

For Example, the complex number 4 + 3i is represented by the point (4, 3) and the
point ( — 3, - 4) represents the complex number — 3 —4i.

We note that the points corresponding to the complex numbers of the type a lie on
the x-axis and the complex numbers of the type bi are represented by points on the
y-axis.



Complex Numbers

y
-Z =-x+1iy N 1= x+1iy
0
L o iy ~r = x+ iy
Figure 3

Note that the points z and — z are symmetric with respect to point O, while points
zand — z are symmetric with respect to the real axis, since if z = x + iy, then
—Z—(—x)+i(-y)and 7 =x+ i(—y). See Figure 3.

Remark : Since the points on the x-axis represent complex number z with

I(z) = 0, the x-axis is also known as the real axis. Points on the y-axis represent
complex numbers z with R(z) = 0, the y-axis is also known as the imaginary axis.
The plane is called as the Argand plane, Argand diagram, complex plane or
Gaussian plane.

y
P (x +1iy)
y
0 x
O M X
Figure 4

Note that OP = \/x2 + y? = |z|
Polar Representation of Complex Numbers

Let P(z) represents the complex number z = x + iy as shown in the complex plane.
Recall that the modulus or the absolute value of the complex number z is defined
as the length OP. It is denoted by |z|. Thus if r = OP; we have

r=|z| = OP y
P(x +iy)
=VOMZ + PMZ = \[x2 + y2
=1z 0 =arg ()
= J[Re@T + M) 0 o
O X M
Figure 5

If & be the angle which OP makes with OX in anticlockwise sense, then @ is
called the argument or amplitude of the complex number z = x + iy. 47



Algebra - 11 Now in the right triangle AOMP,
X = OM = OP cosé@ = r cosd 1)

y=MP =0OPsin 8 =rsing (2)

Thus, the complex number z can be written as
Z=Xx+iy=rcosd +irsin & =r(cos@ +ising)

This, is known as the polar form of the complex number.
Squaring and adding (1) and (2) we have

x% + y% = r?cos®0 +risin*0 =r?(cos*@ +sin*0) =r*.1= r?
[Pythagorean identity]

Thusr?2 =x2 + y2orr = \/x? 4+ y?

which is the modulus of the complex number z = x + iy.

Dividing (2) and (1) , we have

rsiné
Z= =tan0:>tan0=z.
X T cosé X

g is the argument of the complex number z = x + iy.

The value of g (—r< 6 < ) is called the principal value of the argument
or amplitude of z. We denote it by Arg z instead of arg z.

26 POWERS OF COMPLEX NUMBERS

Product of n Complex Numbers

We first take up product of complex numbers.

If z2=ry(cos@; +1isindy), Zo =1y(c0sf, +1SiNG ), ...........
Zn =1, (COSO, +1siNG)), then

212y Zn=T1T2  Tn[COS(O14+ 62+ + Op)+isin(01+0,+ +600)]
However, we shall not prove this statement.
Whenri=r=.................. rh =1, we get
(cos@1 +isind) (cos@, +1sinG3)................ (COSH, +1SING,)
48 =Cos(01+602+ On)+isiN(@1+ 602+ .ccc.....O1) Q)



Corollary 1. cos (f1+ 82)=c0s@1 Cc0SH,—sing;sin B, and
2. sin(@1+02)=sinf1C0SH2+ C0SH1SINE

Proof From (1), above we have

cos (01+602)+ 1siN(O1+02)

=(cos@1+isingq) (cos@,+isingy)
=(cos@1c0s02—sin@1s8iNG,) +1i(sin@1c0SH,+ C0SH1SINE )

Equating real and imaginary parts, we get

cos (f1+02) =C0S@1€0s0,—Sin@1sind,
and sin (81+02) =sin@1c0sH,+ Cc0sH 1SN,

De Moivre’s Theorem (for Integral Index)
Taking 81= 67 ........ 6n= 6 in (1) we obtain

(cosé + ising)" =cos(n 6) + i sin(ng)

This proves the result for positive integral index.

However, it is valid for every integer n.

Example 10 : Use De Moivre’s theorem to find (v3 + i)3.
Solution : We first put V3 + i in the polar form.

Letv3 +i=r(cosd+ising)
= 3=rcos@andl=rsing
= (\/3_)2+12 =r%(cos? 6 + sin* @)
= Sra= 402
Thus, V3 + i = 2(cos@+ising)
= /3 =2cosg and 1 =2sin @
- Zcosezgand sin 0:%
= 6=30°.
Now, (V3 + )®

[2cos (30°) +i sin (30°)]°

23 [c0s(30°) +1 sin (30°)]°

Complex Numbers
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= 8]cos(3 x30°) +isin (3 x30°))] [De Moivre’s theorem]

= 8(cos90° +1i5sin 90°) =8(0 + 1)

= 8i
Cube Roots of Unity

Let x = (1)1/3

>5x3=1l>x*-1=0 =>x-Dx3*+x+1)=0

Therefore, eitherx —1 =0 = (x — 1) (x2+x+1)=0

-1+ .J(1-4 -1+.,(-3 -1+ i(3
= eitherx =1orx = £ V( )= £ )= g 30D
2 2 2
-1 V3 -1 iVv3
Thus, the three cube roots of unity are, 1,7+ [ 5T

Hence, there are three cube roots of unity.

Out of these one root (i.e., 1) is real and remaining two viz.,

are complex.

il +2i@ » 3 -1-i/(3)

2
-1 V3
We ususally denote the cube root - + B3 i by w note that
N 1 3 23, 1. V3.
a)Z:(—l_i_El) - = _ - _ £|:__+£l
2 2 4 4 4 2 2

Hence, the cube roots of unity are 1, o, o 2.

Also, note that o 3= 1.

Some properties of Cube Roots of Unity

1. 1+w+ w? =0



Example 11: If 1, w, w? are cube roots of unity, show that

(i) A+w?—-A+w)i+ w? =0

(i) Q-0)2- 0?)Q2-w® (2- w't)=49

Solution : (i) As 1+ w+ w?=0,we get

14 w= —w? andl+w?’=— w

Thus,
1+ w)?-1+w?)d+ w?

- (—(,02)2— (—0))3 + 0)2

=+ w3t w? = wdn + 1+ w?

= w+1+ =0
(i) Sincew!’= (w3}’ 0 =

and ! = (03)® w?=w?,

Thus 2—w) (2 —w?) (2 — w'®) (2 — w'?)

=2~ (2= 0)2-w)2-0?)
=[2 - )2 - )]

=[4-20 - 20° + 0¥
=[4—2(0+ 0?) + 1]?
=[4-2(-D + 1]?

=72=49

Example 12: Ifx=a+bh, y=aw +b w?

Solution:

and z =a w? + bw, show that
xyz = a3+ b3
Xyz

= (a+b)(aw + hw?) (aw?* + b w)

= (a+b) (a3wd+abw*+ab w? + b2w?3)

[0+ w? =—1]

= (a+b)(a?+ab(w3w+ w?)+bh?) [wd=1]

= (@+b)[ a* + ab (—1) + b?)]

=  (a+Db)(a®-ab+ b?)

= a3+ b3 [-a3+ b3 = (a+ b)(a?-ab+ b?)

Complex Numbers
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Check Your Progress — 3

1. Calculate
(i) (cos 30° + i sin 30°) (cos 60° + i sin 60°)
(i)  (cos @ +isin@) (cos @ —ising)
(iii)  (cos 45° + i sin 45°)?
2. Use identities
cos (6,+ 6,) =cos@ cos @, —sin@ sind,

sin(@,+ 6,) =sind_ cos @, + cos § sind, to obtain values of

(i) cos (75°) (ii) sin75°
(iif) cos(90°+ @) (iv) sin(90° + @)
(v)  cos (105°) (vi) sin (105°)

3. Using the identities in Question 2, show that

tan 91+ tan 92

tan + =
(81 02) 1—tan6?1tan92

4. If1, @, 0 “are three cube roots of unity, show that
(i) l+0) A+ o)A +0H1+0®)(A+wd) =2
(i) (L-w?+wd)’+(1-w?-w?)’=32
(i) (2+3w+20?)°=(2+3w+3w?)’ =1
5. Ifx=a+b, y=aw+bw?and
Z = aw?+ bw, show that
(1) x+y+z=0 (i) x2+y%+ 2% =6ab

(i)  x3+ y3+ 2% =3(a®+ b3)

2.7  ANSWERS TO CHECK YOUR PROGRESS

1. No.
The formula va Vb = Vab

holds when at least one of a, b> 0.

NP S 5 + 4i 5+ 4)
W54 T (5 - 45 + 4) 25 + 16
_5, 4
BTV
L 7+2i 7+2i 74+2i -1 i?
(ii) = = F =1

2—7i  —2i2—-7i (=07 +20) i i



(iid) 1 cosf — isinf Complex Numbers
iii =
cos 0+ isinf  (cosf + isinf)(cosh — isinh)

a cosf — isinf _ cosf — isinf
 (cos20 — i2%sin20) ~ (cos26 + i2sin?0)

= cosf — isin@

2—v=25 2 —5i (2 - 50)(1 + 4i)

(iv) 1—+v=16 1 —4i (1 — 41 + 4i)

2 —5i + 8i — 20i®

1 — 1642
_2+430_22 3
T 017 1Tt

3. (1) Multiplicative mverseof% IS
1-i 1-il—i (@A-D* 1+ i?-2 1-1-2
1+i 1+i1-i 12— 1+1 2 '

Q) Multiplicative inverse of (1 + +/31)%is

1 _ (1- V3i)? _1-2V3i+3i% 1-2V3i-3
1+ V30?2 (A++v3) -3 ) (1 + 3)2 16
—2'—2v3i-— 1 ,
=T——§(1+\/§l)

(i) We have
A+)(1+2i)=14+1i4+2i+2i=1+3i—-2= —-1+3i
Its multiplicative inverse is

1 —1-13i
—1+3i (=14 3i)(=1-30)

—1-31 —1-31i 1 3

. 1 .
2] i im0 T 100 T T TN

X=3+2i > x-3=21i
= (x—3)2=(20)*=> x>~ 6x+9=—4
or x>-6x+13=0

Let’s divide x*— 4 x3+ 4 x* + 8 x + 39 by x? — 6x + 13.
53
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x> — 6x + 13)x*— 4x3+ 4x%+ 8x+40v2+ 2x + 3
x* — 6x3 + 13x?
S) @ S)
2x3 — 9x% + 8x + 40
2x3 — 12 x%+ 26x
S) @ ©
3x?— 18 x + 40

3x?— 18x + 39
© O] ©

1
Thus, x*— 4x3+ 4x%+ 8x+40
= (x*— 6x+13) (x*+2x+3)+ 1

=0+1=1
5 x+iy =(a+ib)>=a®+i3b3+ 3 a(ib)(a+ ib)

= (a3 —3a%b) + i (3a®b — b3)

=>x=a3— 3a?b andy = 3a?b — b3

=>Z=42 — 3p2and L =342 — b2
a b

= 24 2= (a® - 3b%) + (3a? - b?) =4 (a* — b?)
o
6. We have 1+% = l+.l S .l) 1
1-1 1-1 1-1

e
1-i
The smallest value of n is 4.

Check Your Progess — 2

1. LetZ=x+1y
Now, [o|=1 = [1-iZ=|Z-1]|
= [L—i(x+iy)| =[x + iy il

= [(@+y)—ix]=|x+ (y-1)i|

= (A +y)-ixP=lx+ - Dil?

= L+ =X (Y- 1)

=  1+2y+y* =y  —2y+1 > 4y=00ry=0

 Z=X = £ ispurely real.
2. LetZ=x+1y

o As |Z| = 1, we get X2 + y*=1



Z—-1 (x—-1+iy Complex Numbers

N ) T .
oWZ+1 (x+1)+iy

[(x — 1) +iy][(x + 1) — iy]
(x+1)%2+ y?

P -D+ Y +iy(x+1-x+1)
Bl x2+ 2x+ 1+ y?

_(A-D+ 2ixy  xy

26 + 1) x+1°
z—1
= Al is purely imaginary.

3. LetZ=x+1y
Z—i] = |2+
= X +iy —i| = | X + iy +i]
= X+i(y-f =x+iy+1)F
= Xy -D =X (y+ 1)
=  (-D*-@+D?=0

=>-4=0=y=0

Thus, Im (Z) =0
1+0D@+0) 2-1+3i
4.a+bi=( l)(. l)= .l
3+ 3+1
1430 (1+30(B-0)
3+ B+)B-0)
_ 3+3+(09-1i  6+8i
B 9+1 10
_3+4, a—3 b_4
a1 11w A B
5. |(cos@ +isin@)?| = |x+iy]
|cos@ + isin@|? = |x+iy|

=|cos 6 + isind|? = Jx%+ y?
2

:><\/c0329 +sin29) = JxZ 4+ y?

= x*+y?2=1
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Check Your Progress — 3

1. (i) cos (30° +60°) +isin (30° + 60°)
=c0s 90° + isin90°=i
(i) (cos @)~ i%sin?@ = sin?@ + sin?9 =1
(iii)  cos (2(45°) +isin (2 (45°))

= c0s90°+isin90° =i

2. (i) cos 75° = cos (45°+ 30°)
= cos 45° cos 30° — sin 45° sin 30°

1v3 11 +3-1

V3-DvV2 _ J6- 2
4 a 4

(i) sin 75° = sin (45° + 30°)

= sin 45°cos 30° — sin 45°sin 30°

s 1
V2 V2
V3+1 6+ V4
2V2 4

(iii)  cos (90° + 6) =cos 90° cos 6 — sin 90° sin O
= (0) (cos B) — (1) sin =—sin @

>[5
N| =

(iv)  sin(90°+ @) =sin90° cos @ + cos 90° sin O
= (1) (cos 0) + (0) sin #=cos O
(V) cos (105°) = cos (60° + 45°)

= cos 60° cos 45° — sin 60°sin 45°

LBy
vz 2wz
Ve V2

4
(Vi)  sin (105°) = sin 60° + 45°)
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= sin 60° cos 45° (cos @) + cos 60°sin 45°

§ 13 2 g, _<‘/§+1>

2'V2 2V2 22
e+ V2
- UN

sin(6; + 0,)
cos(6; + 0,)

3. tan(&1 + 92) =

sin 8, cosB, + cosf, sin G,

~ cos 6, cos 8, —sin 6,,sin6,

Divide the numerator and denominator by cos 8, cos 8, to obtain

tan 6, + tan0,
tan (6 0, =
an (01 + 02) 1— tanB tanf,

4. (i) (I+o)(+o0®) Q1+0H1+ 0®)(1+ wd)
=(1+w)(1+0) (1+0)1+1(1+ w?)

=2((1+w) (1+w?) ) =2(- w)(-w))*=2w® =2

(i) (I-w+0)’+ (1+o—w?)Ss

= (Co- @) (-0t =0?) S

(= 2)°0® +(=2)(w?)°®

- 32w?% — 320 = — 32 (02 + W)

(-32)(-1) = 32

(iii) (2 +3w+2w?)°

=2+ 2w+ 20% + 0)? = (0+w)’=w’=1
and (2+2@ +2w2)°=(2+2w + 202 + w?)°

=(0+w?) =w®=1
5. (i) x+y+z=a(l+ w?+ w) b (1+ 0+ w)
= (0) +b(0) =0

(i) x*+y* + 22

Complex Numbers
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=(a® + b* + 2ab) + (a*w* + b* w* + 2ab w?) + (a*w* +
b? w? + 2ab w?3)
=a?(1+ w?+ w?)+ b?’(1 + w*+ w?) + 2ab(1 + w3 + 0?)

=a?(0) + b%(0) + 2ab (1 +1+ 1) =6ab

We know that
x3+y3 4+ 73 —xyz

=(x+y+2) (x2+y2+ z2-yz—2X—Xy)

=0

Thus, x3+ y3 + z3 = 3xyz
Also, xyz = (a + b) (aw +bw?)(@aw?+ bw)
= (a+b) [a3w3 + b2w3 + ab (w? + w®)]
= (a+b) (a® + b?2 — ab) = a3 + b3

Thus,
x3+ y3+ 23— 3xyz=3(a®+ b3)

28 SUMMARY

In this unit, first of all, in section 2.2, the concept of complex number is defined.
In section 2.3, various algebraic operations, viz., addition, subtraction,
multiplication and division of two complex numbers are defined and illustrated
with suitable examples. In section 2.4, concepts of conjugate of a complex
number and modulus of a complex number are defined and explained with
suitable examples. The properties of conjugate and modulus operations are stated
without proof. In section 2.5, representation of a complex number as a point in a
plane, in cartesian and polar forms, are explained. Finally, in section 2.6,
DeMoivre’s Theorem for integral index, for finding nth power of a complex
number, is illustrated with a number of examples. Also, some properties of cube
roots of unity are discussed.

Answers/Solutions to questions/problems/exercises given in various sections of
the unit are available in section 2.7.



