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2.0 INTRODUCTION

In the previous unit, we discussed vectors and scalars. We learnt how to add and
subtract two vectors, and how to multiply a vector by a scalar. In this unit, we
shall discuss multiplication of vectors. There are two ways of defining product
of vectors. We can multiply two vectors to get a scalar or a vector. The former
is called scalar product or dot product of vectors and the latter is called vector
product or cross product of vectors. We shall learn many applications of dot
product and cross product of vectors. We shall use dot product to find angle
between two vectors. Two vectors are perpendicular if their dot product is zero.
Dot product helps in finding projection of a vector onto another vector. The cross
product of two vectors is a vector perpendicular to both the vectors.

If cross product of two vectors is zero then the two vectors are parallel (or
collinear). Cross product of vectors is also used in finding area of a triangle or a
parallelogram. Using the two kinds of products, we can also find product of
three vectors. Many of these products will not be defined. In this unit, we shall
discuss the two valid triple products, namely, the scalar triple product and the
vector triple product.

21 OBJECTIVES

After studying this unit, you should be able to:
o define scalar product or dot product of vectors;
e find angle between two vectors;

e find projection of a vector on another vector;



e define cross product or vector product of vectors; Vectors - 11

e use cross product to find area of a parallelogram vector product of vectors;

o define scalar triple product and vector triple product of vectors.

2.2 SCALAR PRODUCT OF TWO VECTORS

Definition : The scalar product or the dot product of two vectors a and b,
denoted by d. b is defined by
d.b =|d||b|cos 8

where 8 is the angle between the vectors a and b.

Also the scalar product of any vector with the zero vector is, by definition, the

scalar zero. It is clear from the definition that the dot product a. b is a scalar
quantity.

Sign of the Scalar Product
If @ and b are two non zero vectors, then the scalar product
@.b =|d||b| cos 8

IS positive, negative or zero, according as the angle 8, between the vectors is
acute, obtuse or right. In fact,

0 is acute =  c0sd>0 = ib>0
6 is right =  c0sf=0 = ab=0
0 is obtuse = cosd <0 = ib<0

Also, note that if and @ and b are non zero vectors then @. b = 0 if and only if @
and b are perpendicular (or orthogonal) to each other.

If d. is any vector, then the dot product d. d., of a@ with itself, is given by

d.d =|d|| d| cos 0= | af®

Thus, the length | @| of any vector d is the non negative square root Vd. d, i.e., of
the scalar product a d , i.e.,

la| =Va.d,
Angle between two Vectors
If 0 is an angle between two non zero vectors a and b, then

d. b = |d||b| cos 6
29
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a.b

@. |b]
or cost) =———
Vb.bVaa

So, the angle 6 between two vectors is given by

.b
6= cos‘1< — )
ldl|b|

Properties of Scalar Product

—

Scalar product is cumulative, i.e., d. b = b.a for every pair of vectors @ and b.

—

. d.(-b) = (. b) and (-d). (-b) = @. b for every pair of vectors d and b.
. (M @) . (2b) =( M L) (@.b) where @ and b are vectors and Ay A, are scalars

>

. (Distributivity) d@.(b + &) = d. b+ @. ¢

N

The following identities can be easily proved using above properties.

(i) (@+Db).(@-Db) =a’— b? (here,a®> =d.d=|dp)
(ii) (@ + b)? = a?+2d.b + b’

(iii) (@-b)? = a> - 2d.b + b?

If i,% and k are mutually perpendicular unit vectors, then

i.i= j.j=k.k=1and

i.j=jk=ki=0 (1)

If @ =a,i+ a,j+ask and b = by + b,j + b3k be two vectors in component
form, then their scalar product is given by

= aji . (bf +b,j+bK)+a,i (b +b,j +bK)+ak(bi +b, ] +bk) (using distributivity)
= ayhy(jK)+agh; (ki) +agh, (k. J) +agb, (k k) (using properties)

= abi+aybyiazbs (using (1))
Thus d. B = a b1+a2b2+a3 b3,

Projection of a VVectors on another Vector
Letd@ =00 and b = OB be two vectors

v

Figure 1



Drop a perpendicular form A on OB as shown in Figure 1. The projection of d Vectors - |1
on b is the vector OL. If 6 is the angle between @ and b, then projection of a

and b has length |(TA| cos 6 and direction along unit vector b. Thus, projection

The scalar component of project of & on b is g. Similarly, the scalar

of @ onb=(|d|cos6)b

- - _ab
component of projectionof b ona |J|J
a

Example 1:  Find the angle 6 between the following pair of vectors.
@ dxb+@)=dxb+dx?¢
(b) d= i+2j+k b=20+2+k

Solution: (@ d.b =(0+3k).(¢ +4f —k)
= 21+04+3(-1)
=2-3=-1
G2 =d.d=(20 +3k). (20 +3k)
=22+0.0+3.3
Zxle)
la =+13
and |5 =B.b = (i +4j-3k).( +4] —3k)
=1.1+4.4+(-3).(-3)
= 26
la] =26
d.b
cos O = NS
ld||b|
~1 ~1

T ViV2e 132

) = cos™?! (_—1>
132
(b) Here,d.b = (i+2] + 2k). (20 + 2] + k)
=12+2.(2)+21
=0
ldl=V1+4+4=v9=3

31



Dimensional Geometry

Vectors and Three |B’| =Vi+4+1=4/9=3

Example 2 : Show that |d |b + | b|d is perpendicular to |d |b - | b|d, for any
two non zero vectors @ and b,

Solution : We know that two vectors are perpendicular if their scalar product is
zero.

(@b + | bla).(ld1b— |b|d)

=|d |b.(1d|b— | bld)+|AB|d.(l@|b— |b|d)
(using distributivity)
= |@|* (b.b)—ld||b|(b.a)+|b|la|(@b)—|b| %@ a)
= |d|*|ldxb=0|2 —|d||b|@b)+ldl||b|(@b)—b l@|>=0
(“db=b.d dd = |d|>andb.b = |b|

6]%)
so, the given vectors are perpendicular.

Example 3 : Find the scalar component of projection of the vector
a=2i+3]+5K on the vector b=2i-2]-Kk.

b

Q

Solution : Scalar projection of @ on b =

=

Here, dé.b =22+3(=2)+ 5(-1) = -7

- 2 2 2
and |b| = \/2 +(=2) +(-1) =3
". Scalar projectionofdonb = —

Example 4 : Show that the diagonals of a rhombus are at right angles.

Solution : Let A B C D be a rhombus (Figure 2')

D C

»

A B
32 (Figure 2)



ABCD being a rhombus, we have Vectors - 11

AC = AB + BC and

_— ——  —

BD = AD — AB

. AC.BD = (AB + BC).(4D — 4B)
= (4B + AD) . (AD — AB) (- AC = 4D)
= AD?— AB? (v (@ + b).(d— b)= @ - b?)
= AD*- AD*=0
— ACLBD (~AB =AD)

Example 5 : For any vectors d and b, prove the triangle inequality

@ + b| < |d] +b]
Solution:  If @=0o0rb =0, then the inequality holds trivially.
So let |d| # 0 #|b|. Then,
|d+ b|> = (@d+Db)’>= (d+Db).(d+Dh)

57 = -

=dd+db+ba+b

=|dP + 2db+ |bf* (- @b = db)

= |d@|? + 2|d|b|cos 6 + |b> where @ is the angle between @ and b
< |@P+ 2|d|b|+ |b* (“cosf <1V 6)

= (ial + b)) *

Hence |d@ + b| < |d]| + |b|

—

Remark : Let @= AB and b = BC ,thena + b=AC
C
d+b
/5
A a B
Figure 3

As shown in figure 3 inequality says that the sum of two sides of triangle is
greater than the third side. If the equality holds in triangle inequality, i.e.,

jd@+b| = |d] +[b|
Then |AC | = |AB |+ |BC|
showing that the points A, B and C are collinear.

Check Your Progress — 1

1.1f @ =50 3] -3k and b= 1 +j -5k then show that @ + b and d— b are
perpendicular. )



Vectorsand Three 2. Find the angle between the vectors
Dimensional Geometry ~ - ~
(@) =31 -j +2k b = —41 +2k
(b) J, 5, e b = -20+2f +4k
3. Find the vector projection of @ on b where d =3{ -5] +2k and b = 71 +j ~2k.
Also find the scalar component of projection of vector b on d.
4. Prove the Cauchy — Schwarz Inequality
@ bl < |al bl

5. Prove that |d -bf° = [df +[bf - 2ab

2.3 VECTOR PRODUCT (OR CROSS PRODUCT) OF TWO
VECTORS

Definition : If d and b are two non zero and non parallel (or equivalently non
collinear) vectors, then their vector product a x b is defined as

dxb =|d||blsingnA

where 0 is the angle between a and b (0 <@ <m)and 7 is a unit vector
perpendicular to both @ and b such that @, b and # form a right handed system.

If @ and b are parallel (or collinear) i.e., when 8 =0 or m, then we define the
vector product of @ and b to be the zero vector i.e., @ x b = 0. Also note that if
either @ = 0 or b = 0,then 0 is not defined and we defined@ x b = 0.

Properties of the Vector Product

1. dx d=0sinced =0

2. Vector product is not commutative i.e., @ x b# b X d. @,
However, @ X b = — b X d.
We have @ x b= |d||b|sin 6 7 where &, b and 7 form a right handed system and
b x d = |b|| @| |sin @ A where b, d and 7 a right handed system. So the

direction of 7| is opposite to that of 7.

Hence,d x b =|d ||b [sin@ A
=_|d ||b |sin 6 A,
= b xad.
3. Let?i, , k from a right-handed system of mutually perpendicular unit vectors
in three dimensional space. Then

ixi=j xj=k xk =0 and
ixj=k jx k=i kxi=j
Also,fxi=—Fk kxj=-1 ixk =-j

Figure 4

34



4. Two non zero vectors @ and b are parallel if and only if Vectors - 11
dxb=0
5. Vector product is distributors over addition i.e., if , b and ¢
are three vectors, then
() dx® +¢)=dx b +d X
(i) (@+b)xé =dxZ+ b X
6. If 2isascalarand dand b are vectors, then
(Ad)xb =d x (Ab )=A(dxb)

oy o
iy

.
c .
¢

Vector Product in the component form

Let d = af+ayj +ask and
1—5 = b+ sz +b3l’€\.
Then

dxb = (ail + axf +ask ) x (bil + by j +bsk)

=arbi (i X 1)+arb(I xj)+abs( x E)+a2b1(j X 1) + az bs
G x ]’C\)+ abs(j % ]2)+8.3b1(i{\>< 1) +a3b2(Exj)+a3b3
(k x k)
=a b2E+a1 bs () + a2 bl(—l?)+a2 bsl + az byj + az by (1) (using property 3)
:(azbg—a3b2)2+(a1b3—agbl)j+(a1b2—azbl)lQ

A
=la; ap, az
b, b, bs
Example6: Findd x b if ¢ =i+j+kand b = i+2/+3k
Solution : We have
. i ]k
axb =1 1 1
1 2 3
=(3-2)i-(B-1)j+@2-1k
=1-2j+k

Example 7: Find a unit vector perpendicular to both the vectors
a=4i+j+3kand b=-2i+]-2k

Solution : A vector perpendicular to both @ and b is

13 7 k

4 -1 3

-2 1 =2 )
=22-3)i-(-8+6)j+(4-2)k
=—i+2f+2k

d@ x b| =VIZ+12+22=+9 =3.

So the desired unit vector is

i xb 1

m—g(—l-{-Z]-FZk)

35
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Dimensional Geometry = - N .. ~
ax((b+C)=axb+axc

using component form of vectors.

Solution : Let & =a, i +a,j+ ask

S
11
[y
iy
+
S
N
~>
+
o
w
x-t
D
>
o

=ci L+ cyj +c3k.

a

SO, b+ &= (b, +¢) i+ (by+ )]+ (bs+c3) k

Now,
i j k
ix(b+d)=| q a, as
bi+c, by+c, bz+cs

t J k i j k
=lay a, az| +|lag a, aj
by b, bs €1 C C3

=adax b +ax?c.

Example 9: Show that
|dxb > =(d.d)(b.b) — (@ b)>

Solution: |d@xDb[]P =|d|b|sin@

“ldax b P =(d|b|sin 6)

|d[2bf (1- cos? §)

|&PIB 2 —( |8Pbf cos® )

= (aa)’(bb)— (ab)?

Example 10 : Find|d x b |if

Solution:  Here @. b= 12

d.b 1A

| = |aj. |b|sm9

4
=10x2 x ==16
36 5



Area of Triangle

Let d, b be two vectors and let 8 be the angle between them (O <6 <m). LetO
be the origin for the vectors as shown in figures (Fig. 5) below and let

0OA=d, OB=bh

B #D

O C A
Figure 5
Draw BC1 OA.

ThenBC =0OB Sin 8 = |b|sin 6

1
. Area of AOAB = Z (0A)(BC)

|@||b| sin @

_ N =

=§mxa
Thus, if @ and b represent the adjacent sides of a triangle, then its area is given as
1,. -
E |a X bl
Area of a Parallelogram

In above figure, if D is the fourth vertex of the parallelogram formed by O, B, A
then its area is twice the area of the triangle OBA.

Hence, area of a parallelogram with a and b as adjacent sides = |a x B|.

Example 11: Find the area of A ABC with vertices A (1,3,2), B (2, -1,1) and
C(-1, 2, 3).

Solution : We have

AB =0B-04
=2-1Di+(1-3)j+01-2) k

~

=1 4k

andBC =(-1-1) i +(2-3)j +B-2)k
=-21-j+k

1 — —
Vector Area of A ABC =E(AB X BC)

Vectors - 11
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1] ¢ j ok

=511 -4 -1
2

-2 -1 1

1 L

ZE[_5i+j_9k]

1 1
" Area of AABC = E\/ 524+ 12492 = 3 V107

Example 12 : Show that (& — b)x (@ + b) = 2(d@ X b). Interpret the result

geometrically.

Solution : (@—-Db) X (d +b)

—

Let ABCD be a parallelogram with AB =d and AD = b.

Then area of parallelogram = AB X AD = d X b
D C
b
A a B
Figure 6

Also, diagonal AC = @+ b
and diagonal DB =d —b
. (@ +b)x(@—Db)=AC x DB

= area of parallelogram formed by AC and DE.

Thus, the above result shows that the area of a parallelogram formed by diagonals

of a parallelogram is twice the area of the parallelogram.

Check Your Progress — 2

1. Find a unit vector perpendicular to each of the vector (a + f)) and (d — 5),

whered =1 +2j—4kand b=1—-j +2k

2. Show that
Gx(b+23 +bx(@+d)+e¢x(@+b)=0



3. For Vectors Vectors - 11

G=1-2j+k, b =21—j+ k andé =1+ j -2k
Compute (é x b) x ¢and d x (b X &).
is (@xb) x é¢=d x (b x &).

4. Ifthe vectors d, b and ¢ satisfy @ + b + &= 0, then prove that
bxé=¢ xd=dxb.

5. Find the area of a parallelogram whose diagonals are
G=31+j 2kand b = { —3 + 4k

2.4 TRIPLE PRODUCT OF VECTORS

Product of three vectors may or may not have a meaning. For example,

(d.b). & has no meaning as d@. b is a scalar and dot product is defined only for
vectors. Similarly, (&.5) X ¢ has no meaning. The products of the type

(@ x b) x ¢ and d. (b x ¢). are meaningful and called triple products. The
former is a vector while the latter is a scalar.

Scalar Triple Product

Definition : Let d@, b and & be any three vectors. The scalar product of d@.(b x &)
is called scalar triple product of &, b and & and is denoted by [, b, &]. Thus
[d,b,¢] =d.(bxd).

It is clear from the definition that [a, b c]. Is ascalar quantity.

Geometrically, the scalar triple product gives the volume of a parallelepiped
formed by vectors @, b and ¢ as adjacent sides.

Scalar Triple Product as a determinant

~

Let d = a;i+ a,j+ ask
b =bi+b,j + bsk
and ¢ = cii+cyf + sk
Then
A ij k
a(xc) =d.|b, by, b
C, C; C3
— A ~ N b2 b3 a bl b3 A bl bZ "}
=(aqi+a,j+ a;;k).{c Y Ll P . k
Caltr s g |br Bs| g e P2
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Thus, a(B)XE) =|by by, bs

= bl b2 b3
(o8} Cy C3
a; a; as

I

Note : We can omit the brackets in @.(b x &) and just write d. b X ¢ because

(d@.b) x & is meaningless.

Properties of Scalar Triple Product

1.

[d,b,é]=[b,éd] = [¢db]— [b,d,c]

=—[&b,d] =-[a, b]
This is clear if we note the properties of a determinant as [d,b, ¢] can be
expressed as a determinant.
In scalar triple product &.(5 x C), the dot and cross can be interchanged.
Indeed, d.(b x &) =[d,b,¢] =[b,é d] = [¢,d,b,]

= ¢.(d x b)= (d x b).¢.

=[pa,ab,rc]= parfa,b.c] \yhere p, q and r are scalars. Again it is clear
using properties of determinants.
If any two of @.b and ¢ are the same then [@b&] = 0 For example,

[d,b,é] = 0

Coplanarity of three vectors

Theorem : Three vectors @.b and & are coplanar if and only if [d, b, ¢ = 0]

Proof : First suppose that @. b and & are coplanar. If band ¢ are parallel
vectors, then b x &= 0andso d.(bx¢) =0. If band ¢ are not parallel,
then b x¢ being perpendicular to plane containing b and d, is also
perpendicular to @ because @, b and & are coplanar.

Conversely, suppose that [d,b,¢] = 0.
dand bx¢ are perpendicular as their dot product is zero.

a(b x &) =0.

Ifdand b x & are both non zero, then
Buthx & is
and hence d, b and ¢ must lie in a plane, i.e.,

perpendicular to both b and &
they are coplanar. If @ = 0 then @, b and & are coplanar as zero vector is
coplanar with any two vectors. If b x &= 0, then b X ¢ are parallel vectors
and hence d,band ¢ must be coplanar.

Note : Four points A, B, C and D are coplanar if the vectors AB, AC and AD are

coplanar.



Example 13: If d =7+ a, —2j +3k, b=1-2j+2k,and &é=2{+8j Vectors - 1
find [d, b,¢]

Solution : [d, b,¢] = @. (b x &)

NI =
=11 -2 2
2 8 0
=7(0 - 16) + 2(0 — 4) + 3(8 + 4)
=_112-8+36
=_84

Example 14 : Find the value of A for which the vectors
G=1 -4 +k b =Ai —2f +k,and & =2i +3j+3k are
coplanar,

Solution : If @, b and ¢ are coplanar, we have

=d.(bxd)=0ie,
1 -4 1

A -2 1|=0

2 3 3

= 1(-6-3)+4BA-2)+(3A+4)=0

13

ﬁ}L:E

=

Example 15 : If @, b, ¢ are coplanar then prove that @ + b , b + ¢ and ¢ + d are also
coplanar.

Solution : Since d@, b, & are coplanar,
- [, b,d =0
Now[d +b,b+¢ ¢+d] =(d@ + b).(b+ &) x (Z+d)

= (@+b).[(b+7) x+(b+7) xd]

]
—~

a+D) [Bx &+ bx d+ éxd] (aséx é= 0)

a.(bxd) + 5.(5 X @)+ a.(¢ x d) + b.(b x &) +b. (b X @) +b.(¢ X @)

[d, b, €] +[d,b,d]+[dcd] + [bb,& +[b,b,d]+][b,éd]

2[d,b,¢]  (using property (4)
=0

~d + b,b+cand &+ d are coplanar

41
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Definition : Let &, b, and & any three vectors. Then, the vectors @ x (b X ¢) and
(@ x b) x ¢ are called vector triple products.

It is clear that, in general
dx(bx?d)# (@xDb)xé

Note that d@ x (b x &) is a vector perpendicular to both @ and b x ¢. And also b
x ¢ is perpendicular to both b and & Thus @ x (b x &) lies in a plane containing
the vectors b and &, i.e., @ x (b x &), b and & are coplanar vectors.

We now show that for any three vectors @, b and & we have
dx(bx?d)=(dd)b-(d.b)é

Let @ =a;i+a,j+ ask
b =b,i+b,j+ bsk
andé =c¢i4c,j+ c3k. Then

. i j k
bxc=|by b, bs
€1 C C3

= (byc3 = b3cy) T+ (bscy— byc3)j +(bicy— bycq) k

~
~

T ] k
ax(bxg): aq a, as
b,c;- bsc, bscy - bycs  bicy —-bycq

= [ay (bicy; — bycy) —az (bzcy — bycs) Ji+ [az(bycs — bscy)—aq(bicy _bacq)] )
+ [ay(bscy _bics3) — ay(bycs _bscy)] k

Also, (d.8)b — (d.b) ¢ 1)

= (ascy + aycy + ases) (byi+ by j+ bsk ) — (ayby + ayb, + asbs)
(cit+ ¢y f+ c3k)

[bi(aicy + azc, + aszcs) — cp(aihy + azb, + azbs) |1
+ [by(asc; + azc, + azc3) — ¢ (a1hy + azb, + azbs) ]
+ [b3(asc; + azc, + azc3) — c3 (arhy + azb, + azbs) ]

j
k

[az(bic; — bacy) — az(bs ¢ bic3)] 1

+ [az(byc3 — bscy) — ag(by - bycq)] )

+ [a;(bscy + bic3) — az(by c3-bscy)] k 2
42



Vectors -

From (1) and (2), we have
dx (bx?d=(dcé)-(db)é

It is also clear from this expression that a@ x (E x ¢) is a vector in the plane of
b and ¢.

= @.ab—-(b.0)d

|
B

So, (@ x b) x &is a vector in the plane of b and d.

Theorem : Let d,b and ¢ be any three vectors. Then d x (b x ¢) = (d x b) x €
if and only if d and ¢ are collinear.

Proof : First suppose d@ x (b x &) = (@ x b) x ¢
Now, d x (b x €) = (d.&)b — (d.b)¢
and (@ x b) x & = (d@.8)b — (d.0)d
So, —(ab)c=—(bc)a
= ¢ and d are collinear vectors.

Conversely, suppose that @ and ¢ are collinear vectors.
Then there exist a scalar A such that

¢ = Ad. Then
—(@.b)¢ =-(a.b)(xd) = —-r(a.b)d
and —(b.&)d = - (b.Ad)da =-A(b.d)d
= —2A(d.b)d

So, — (d.b)¢ = —(b.¢)d
= (d.6)b — (d.b)é=(d.&)b — (b.¢)a
ie,dx(bx?d = (@xb)x¢é

Example 16 : Show that
dx(bx¢&)+bx(@xad)+éx(@axb)=0

Solution : @ x (b x &)+ b x (¢ x d) + ¢ x (d x b)
= (d.&)b - (d.b)¢ + (b.d)é— (b.¢)d + (¢.b)d— (¢.@)b
=0 since dot product is commutative.

Example 17 : Let q, b and ¢ be any four vectors. Then prove that
() (@xb)x(@xd)=[db,d]¢ —[db,2ld
(i) (@xDb)x(@xd)=[dcdlb—[b¢dld
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Vectorsand Three  go|ytion : (i) Let @ x b= 7 Then
Dimensional Geometry

(@xDb)x (Exd)=7x (€xd)

—~~
Q
X
[w

—/
X

—
(9
X
QY

N

1

—
Q
X
S

—/
X
=

= (d X b)[(b x &). )¢ — (b x &).8)d]

= (@ x B). [(bx&).3)C)] (~(bx&).¢=0)

= [(6x &). &)@ x b).2] =[2.(5 x &)[d. (b x )]
=[4,b, T’
Example 19 : Forvectorsd =i—2j + k,
b =21+ j+k

andé=1+2j—-k verify that
G x (b x &)= (d.&)b — (d.b)¢

. i ;] ok
bxé=2 1 1
1 2 -1
=37 +3j+3k
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So, dx (bx?d)

it j ok
=1 =2 1
3 3 3
=9 6] - 3k (1)
Also,
a.c =(i-2j+k).(i+2j+k)
=1-4-1=-4
©(@.¢.b=—4 (i+j+k) = -—81-4j-4k
and d.b =(+2j +k).i+j+%k) =1

~ (d.b)é=1+2j—k
Thus, (@. &)b— (d.b)é=— 91 — 6] — 3k ©)
Hence, from (1) and (2)
G x (bx¢é)=(d.cd)b-(d.b)
Check Your Progress — 3
1. Forvectors d=2 + +3k , b= —1 +2] + k,and ¢=31 + +2k find [, b, €.

2. Find the volume of the parallelepiped whose edges are represented by

G=20—3j + 4k , b=t +2j — k,¢ =31 — i +2k
Show that the four points having position vectors
i 4542k, 68 +11f W ZRP A 6E S +- + 4k, are coplanar.
4. Prove that
(@ x b). (¢x d)=(d.d)b.d) —(@d)(b.?2
5. For any vector d prove that
ix(@xi)+jx(@x]) +kx(@xk)=2d
6. Prove that

G x [dx(@ xb)] =(d.a) (bxd)

2.5 ANSWERS TO CHECK YOUR PROGRESS

Check Your Progress — 1

1. Here,d +b=6(+2j — 8k and
G —b=41-4j+2k
So, (@ +b). (@—Db) = (6i+2j —8k). (41— 4] +2k)

=24-8-16=0

Hence d + b and a + b are perpendicular vectors.
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Vgctors_and Three 2. (a) Here, a. B’ =3(-4)+(-1).0+2.2
Dimensional Geometry
=—12+4=-8

ld| =32+ (-1)2 + 22 =414

bl = /(=92 + 22 =20

-8 —4

b
b| VI&20 70

(b) Here,d.b =1(-2)+(-1)2+(-2) 4

= -12

@l =12+ (—D2 + (-2)% = V6

b|=/(=2)2 + 22+ 42 =24
_ab _ -12
@||b| V6V24

. cos @

=2>0=m

3. Vector Projection of d on b

ab |-
|b]

—(12) 71 +7 — 2k
= 52 (71 +7 )

_14A+2A 4E
~“9!'T9/ 79 .
Seatarooectoff ong - &b _ 12
calar project o ona = _—= —
prel @ = V38

4. The inequality holds trivially if (axb)xc#ax(bxc)=0, b=0

So,let|d| # O or |b| #0
Now, d.b = | d||b]| cos 6

. .d— b.b
|d|>—~ 2d.b +|b|?

(" dot product is commulative)
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Check Your Progress — 2

1.

Here

-

d+b=20 +j -2k
d—b = 3j —6k

Let é=(d + b) x (d — b). Then & is vector perpendicular to both d + b

and d@ — b.
i 7k
Nowc= |2 1 =2
0 3 -6

=(-6+6)1 + (=12+0)j + (6+0) k
=12 + 6k

A unit vector in the direction of ¢ is

1

(. =—=C=

|C] 122 + 62 Lok

1 N
= — (12j + 6 )

6v5

_2"+
\/§]

1z
NG

So, ¢ is a unit vector perpendicular to both @ + b and @ — b.

Ax(b+3)+b x@+3)+éx@+Db)
—dxb+dXé+b x+bx d+ exd+ ¢
= dGxbiXxd+bXZé—-dxb+cxd—b x ¢
axc=—c¢xaand
. i ]k .
axb =11 -2 1|=-1+j+ 3k
2 -1 1 )

s L j k R
(@xb)yxé=|-1 1 3|=-501+j—-2k
1 1 -2

Also,
AN 1% ~
(bx &)=12 -1 1|= i+ 5/+ 3k
1 1 =2
y i j k ~
So,dx (bx &) |1 —2 1|=-111-2j+ 7k
1 5 3

Clearly,

(@x b)yxd#d (bxd)

!

(

c

{

¢ X b (using distributivity)

-

“bx d= —dxb)
Xxb=-b x &0

Vectors - 11
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Vectors and Three

Dimensional Geometry

48

From (1) and (2), we have
Axb=bxé=¢éxd
5.  Let ABCD be the parallelogram

D

Figure 7

So area of parallelogram ABCD

= |AB x AD|



)

Now, [AB x AD| = |1

=(2-3)

2 -1 1

ik
2, =3

I—(1+6)] +(-1-4)k

=-11-7j -5k

:5\/§

+ (=7)2+(=5)?

Hence, the area of parallelogram ABCD = 5+/3

Check Your Progress — 3

I
W = =~
=N~
N = &)

. (bx &)

Now, d. (b x &) =

3. Let

2 -3 4
1 sl
3 -1 2

= 31+5) -7k

=21 +] + 3k). (31 + 5] 3 — 7k)
=6+5-21

=-10

Volume of Parallelopiped = |d. (b X )|

Vectors - 11

49



Vectors and Three

Dimensional Geometry 5 12 0
Now, E(B—éxC—D)): B _% ¢ =0
%5 -2

. AB,BC and CD are coplanar.

Hence A, B, C and D are coplanar.
4. Letax7 =7 Then
@ xB). @xd)=T.(¢xd)

:(Fxﬁ)ﬁ

5. LHS. =ix@x ) +] x@X j)+kx(@@x k)

~

=[@DE- a1+ [(Pd— G+ (EDd— (k)R]
=d— (Ld)i+d—(G.d)j+ d— (k.d)k

=33 [Ld) + §.@)+ (k.d)k]

Let a =ali+a2j + az k
So, i i.(aqt—a,] +as )— a,

Similarly, j.

6 d x (d % (dx b))
= G x[(d.b)d — (d.d)b]
= (d.b) (@ x @) — (d.d) (@xDb)
=_(@d) (@b (vdxd="0)
= (d.d)(bxad) (“—dxb=>bxXa)
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26 SUMMARY

This unit discusses various operations on vectors. The binary operation of scalar
product is discussed in section 2.2. In the next section, the binary operation of
vector product (also, called cross product) is illustrated. Finally in section 2.4, the
ternary operation of tripe product of vectors is explained.

Answers/Solutions to questions/problems/exercises given in various sections of
the unit are available in section 2.5.
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